Semi-supervised learning using multiple one-dimensional embedding based adaptive interpolation

نویسنده

  • Jianzhong Wang
چکیده

We propose a novel semi-supervised learning scheme using adaptive interpolation on multiple one-dimensional (1-D) embedded data. For a give high dimensional data set, we smoothly map it onto several different one-dimensional (1-D) sequences, so that the labeled subset is converted to a 1-D subset for each of these sequences. Applying the cubic interpolation of the labeled subset, we obtain a subset of unlabeled points, which are assigned to the same label in all interpolations. Selecting a proportion of these points at random and adding them to the current labeled subset, we build a larger labeled subset for the next interpolation. Repeating the embedding and interpolation, we enlarge the labeled subset gradually, and finally reach a labeled set with a reasonable large size, based on which the final classifier is constructed. We explore the use of the proposed scheme in the classification of handwritten digits and show promising results.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face recognition via collaborative representation based multiple one-dimensional embedding

This paper presents a novel classifier based on collaborative representation and multiple onedimensional embedding with applications to face recognition. To use multiple 1-D embedding (1DME) framework in semi-supervised learning is first proposed by one of the authors, J. Wang, in 2014. The main idea of the multiple 1-D embedding is the following: Given a high-dimensional data set, we first map...

متن کامل

A novel semi-supervised learning framework for hyperspectral image classification

In this paper, we propose a novel semi-supervised learning classification framework using box-based smooth ordering and Multiple 1D-embedding-based interpolation method in Ref. 25 for hyperspectral images. Due to the lack of labeled samples, conventional supervised approaches cannot generally perform efficient enough. On the other hand, obtaining labeled samples for hyperspectral image classifi...

متن کامل

Combination of Adaptive-Grid Embedding and Redistribution Methods on Semi Structured Grids for two-dimensional invisid flows

Among the adaptive-grid methods, redistribution and embedding techniques have been the focus of more attention by researchers. Simultaneous or combined adaptive techniques have also been used. This paper describes a combination of adaptive-grid embedding and redistribution methods on semi-structured grids for two-dimensional invisid flows. Since the grid is semi-structured, it is possible to us...

متن کامل

Combination of Adaptive-Grid Embedding and Redistribution Methods on Semi Structured Grids for two-dimensional invisid flows

Among the adaptive-grid methods, redistribution and embedding techniques have been the focus of more attention by researchers. Simultaneous or combined adaptive techniques have also been used. This paper describes a combination of adaptive-grid embedding and redistribution methods on semi-structured grids for two-dimensional invisid flows. Since the grid is semi-structured, it is possible to us...

متن کامل

Wised Semi-Supervised Cluster Ensemble Selection: A New Framework for Selecting and Combing Multiple Partitions Based on Prior knowledge

The Wisdom of Crowds, an innovative theory described in social science, claims that the aggregate decisions made by a group will often be better than those of its individual members if the four fundamental criteria of this theory are satisfied. This theory used for in clustering problems. Previous researches showed that this theory can significantly increase the stability and performance of...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IJWMIP

دوره 14  شماره 

صفحات  -

تاریخ انتشار 2016